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Thus fractional calculus extends the derivative
operator into a continuous operator.
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Example: Fractional Derivative of e’

Calculus:
Dt [ert} — rert
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Example: Fractional Derivative of e’

Calculus:
Fractional Calculus:

DY [ert] =r%" acC
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Heat Equation: PDE vs FDE

du d%u )
PDE.: E = W or Dﬂ/l = Dxu
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Heat Equation: PDE vs FDE

du d%u )
PDE.: E = W or Dtl/l = Dxlxl

FDE: D% = D?>u where a € [1 — 8,1+ 8] C R

Initial-Boundary-Value Problem:

Object: One dimensional rod of length L
Boundary Conditions: u(z,0) = u(t,L) =0
—4a , 4a

T

Inital Conditon: u(0,x) =
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Solutions: PDE vs FDE

PDE:

u(t,x) =

_,;)n3(2n+1

S 32a C(n+ D\ e,
—>?’Sln Tx e L2
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Solutions: PDE vs FDE

PDE:
S 32a . (2n+1)7r) —Cnt1)a?
u(t,x): —Sln(—x e L2
,;)ﬂ3(2n+1>3 L
FDE:

0o 32 2 1 T o —(2n+1)27r2
M(t,X) = Z 3—a33in (Mx> e 12 !
= m(2n+1) L
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Heat Equation: PDE vs FDE

PDE Solution with a=L=1




Heat Equation: PDE vs FDE

FDE Solutions with a=L=1
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Thank You. Any Questions?
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